Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(3): 619-636, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38310355

RESUMO

Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a rare X-linked recessive lysosomal storage disorder due to a mutation in the lysosomal enzyme iduronate-2-sulfatase (IDS) gene. IDS deficiency leads to a progressive, multisystem accumulation of glycosaminoglycans (GAGs) and results in central nervous system (CNS) manifestations in the severe form. We developed up to clinical readiness a new hematopoietic stem cell (HSC) gene therapy approach for MPS II that benefits from a novel highly effective transduction protocol. We first provided proof of concept of efficacy of our approach aimed at enhanced IDS enzyme delivery to the CNS in a murine study of immediate translational value, employing a lentiviral vector (LV) encoding a codon-optimized human IDS cDNA. Then the therapeutic LV was tested for its ability to efficiently and safely transduce bona fide human HSCs in clinically relevant conditions according to a standard vs. a novel protocol that demonstrated superior ability to transduce bona fide long-term repopulating HSCs. Overall, these results provide strong proof of concept for the clinical translation of this approach for the treatment of Hunter syndrome.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Animais , Camundongos , Mucopolissacaridose II/terapia , Mucopolissacaridose II/tratamento farmacológico , Iduronato Sulfatase/genética , Iduronato Sulfatase/metabolismo , Terapia Genética , Sistema Nervoso Central/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Células-Tronco Hematopoéticas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-37674380

RESUMO

BACKGROUND: Caregivers of Amyotrophic Lateral Sclerosis (ALS) patients experience varying psychological responses following the patient's death, including sadness, loneliness, guilt, and a loss of purpose. OBJECTIVES: This research aims to investigate the caregiver journey experienced from the time of diagnosis to the loss of a care recipient, with a specific focus on understanding the factors that contribute to improved coping with bereavement. METHODS: The present study used the Interpretative Phenomenological Approach (IPA) to qualitatively explore the accounts of 41 Italian bereaved caregivers of people affected by ALS (Mean Age = 59.78; Female: 60.98%; Male: 39.02%). RESULTS: Results revealed 5 overarching themes representing 5 macro areas that emerged from the analysis of the interviews ("Caregiver's perception of his/her life", "Caregiver's feelings", "Caregiver's life after patient's death", "Caregiver's disease description", "Caregiver's help resources"), these were further defined based on 12 main themes, which were, in turn, articulated into 30 subthemes. The transition from life before ALS ("a peaceful landscape") to caregiver life (compared to the color "black") was a "shock", during which caregivers had to change their needs. However, life after the person living with ALS' death was both characterized by a sense of "re-birth" and "emptiness", and a general need for "psychological assistance" and "social support". CONCLUSIONS: Results emphasize the need to improve the psychological support offered to caregivers of person living with ALS after the patient's death, tailoring it to the specificity of the condition, to meet their emotional needs, reduce isolation and help them cope with practical challenges and plans.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Esclerose Amiotrófica Lateral/psicologia , Cuidadores/psicologia , Apoio Social , Pesquisa Qualitativa
3.
Mol Ther Methods Clin Dev ; 31: 101131, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37920236

RESUMO

Ex vivo gene therapy (GT) is a promising treatment for inherited genetic diseases. An ideal transduction protocol should determine high gene marking in long-term self-renewing hematopoietic stem cells (HSCs), preserving their repopulation potential during in vitro manipulation. In the context of the improvement of a clinically applicable transduction protocol, we tested prostaglandin E2 (PGE2) as a transduction enhancer (TE). The addition of PGE2 shortly before transduction of human CD34+ cells determined a significant transduction increase in the in vitro cell progeny paralleled by a significant reduction of their clonogenic potential. This effect increased with the duration of PGE2 exposure and correlated with an increase of CXCR4 expression. Blockage of CXCR4 with AMD3100 (plerixafor, Mozobil) did not affect transduction efficiency but partially rescued CD34+ clonogenic impairment in vitro. Once transplanted in vivo in a competitive repopulation assay, human CD34+ cells transduced with PGE2 contributed significantly less than cells transduced with a standard protocol to the repopulation of recipient mice, indicating a relative repopulation disadvantage of the PGE2-treated CD34+ cells and a counter-selection for the PGE2-treated cell progeny in vivo. In conclusion, our data indicate the need for risk/benefit evaluations in the use of PGE2 as a TE for clinical protocols of GT.

4.
Patient Prefer Adherence ; 17: 1845-1866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533752

RESUMO

Background: Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory lung disease characterized by persistent respiratory symptoms and airflow limitation. Besides its irreversibility, COPD is a treatable condition, and patients would strongly benefit from being adherent to their treatments. However, almost half of them are non-adherent, and, according to several recent studies, the way the patient perceives the disease might influence this variable. Aim: This systematic review provided a synthesis of studies about the relationships between illness perceptions (IP), cognitions, beliefs, and adherence in COPD. Methods: English language publications were searched in PubMed, Medline, Scopus, ResearchGate, PsycINFO, and Cochrane Library databases from November 2022 to February 2023, following PRISMA guidelines. The reference lists of eligible studies were also searched. Data extraction and critical appraisal were undertaken by two reviewers working independently. Results: A total of 14 studies were included. Adherence to treatment in COPD is confirmed to be low, using both self-report questionnaires and objective assessment systems. Most studies concluded that COPD is perceived as a moderate threat destined to last forever, even if many participants referred to little disease knowledge. This perception did not change between adherent and non-adherent groups. Those who considered more necessary to take their medicines and had a caregiver were more adherent and less concerned about their future. On the other side, forgetfulness, lack of trust in medications, and difficulties in understanding how to take them were perceived as the main causes of non-adherence. Other predictors of non-adherence, like depression, low self-efficacy, and severity of disease were confirmed. Conclusion: The systematic review highlights the variability of the relationship between IP, cognitions and beliefs, and COPD treatment adherence. A new level of awareness of the relationship between patients' subjective point of view and treatment adherence may inform future treatment options and promote a more personalized intervention.

5.
Mol Ther Nucleic Acids ; 32: 229-246, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090420

RESUMO

Sickle cell disease (SCD) is due to a mutation in the ß-globin gene causing production of the toxic sickle hemoglobin (HbS; α2ßS 2). Transplantation of autologous hematopoietic stem and progenitor cells (HSPCs) transduced with lentiviral vectors (LVs) expressing an anti-sickling ß-globin (ßAS) is a promising treatment; however, it is only partially effective, and patients still present elevated HbS levels. Here, we developed a bifunctional LV expressing ßAS3-globin and an artificial microRNA (amiRNA) specifically downregulating ßS-globin expression with the aim of reducing HbS levels and favoring ßAS3 incorporation into Hb tetramers. Efficient transduction of SCD HSPCs by the bifunctional LV led to a substantial decrease of ßS-globin transcripts in HSPC-derived erythroid cells, a significant reduction of HbS+ red cells, and effective correction of the sickling phenotype, outperforming ßAS gene addition and BCL11A gene silencing strategies. The bifunctional LV showed a standard integration profile, and neither HSPC viability, engraftment, and multilineage differentiation nor the erythroid transcriptome and miRNAome were affected by the treatment, confirming the safety of this therapeutic strategy. In conclusion, the combination of gene addition and gene silencing strategies can improve the efficacy of current LV-based therapeutic approaches without increasing the mutagenic vector load, thus representing a novel treatment for SCD.

6.
EMBO Mol Med ; 15(4): e15968, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36876653

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) can establish a long-lasting microglia-like progeny in the central nervous system of properly myeloablated hosts. We exploited this approach to treat the severe CLN1 neurodegenerative disorder, which is the most aggressive form of neuronal ceroid lipofuscinoses due to palmitoyl-protein thioesterase-1 (PPT1) deficiency. We here provide the first evidence that (i) transplantation of wild-type HSPCs exerts partial but long-lasting mitigation of CLN1 symptoms; (ii) transplantation of HSPCs over-expressing hPPT1 by lentiviral gene transfer enhances the therapeutic benefit of HSPCs transplant, with first demonstration of such a dose-effect benefit for a purely neurodegenerative condition like CLN1 disease; (iii) transplantation of hPPT1 over-expressing HSPCs by a novel intracerebroventricular (ICV) approach is sufficient to transiently ameliorate CLN1-symptoms in the absence of hematopoietic tissue engraftment of the transduced cells; and (iv) combinatorial transplantation of transduced HSPCs intravenously and ICV results in a robust therapeutic benefit, particularly on symptomatic animals. Overall, these findings provide first evidence of efficacy and feasibility of this novel approach to treat CLN1 disease and possibly other neurodegenerative conditions, paving the way for its future clinical application.


Assuntos
Encéfalo , Sistema Nervoso Central , Animais , Camundongos , Modelos Animais de Doenças , Terapia Genética , Células-Tronco Hematopoéticas
7.
Curr Cardiol Rep ; 24(12): 1995-2008, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36327056

RESUMO

INTRODUCTION: Although poor medication adherence is considered an impacting risk factor for worsening heart failure (HF) outcomes, adherence rates in HF patients continue to be considerably low. To improve this condition, several studies investigated the impact of many determinants on medication adherence; however, few authors explored the role of depression on it. PURPOSE OF REVIEW: The purpose of this systematic review was to explore the association between depressive symptoms and medication adherence in HF patients. In particular, the research question was is depression a barrier to medication adherence in HF patients? METHODS: A systematic review of quantitative analysis studies was undertaken. Six electronic databases were searched between the end of October and March 2022. Thirty-one trials were included, all of them assessed depression, adherence to medication, and their possible relationship. RESULTS: As was intended, findings showed that the impact of a mild to moderate level of depression was significant on adherence to treatment in HF patients. However, many other risk factors emerged, like family support and health practices (es. low sodium diet). CONCLUSION: The detection of depression in the setting of HF should be crucial to HF patients' physical health and quality of life. Future research should take depression into account, exploring this area through self-report and qualitative interview as well.


Assuntos
Insuficiência Cardíaca , Qualidade de Vida , Humanos , Depressão/diagnóstico , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Adesão à Medicação , Fatores de Risco
8.
Viruses ; 13(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34452394

RESUMO

Lentiviral vectors are the most frequently used tool to stably transfer and express genes in the context of gene therapy for monogenic diseases. The vast majority of clinical applications involves an ex vivo modality whereby lentiviral vectors are used to transduce autologous somatic cells, obtained from patients and re-delivered to patients after transduction. Examples are hematopoietic stem cells used in gene therapy for hematological or neurometabolic diseases or T cells for immunotherapy of cancer. We review the design and use of lentiviral vectors in gene therapy of monogenic diseases, with a focus on controlling gene expression by transcriptional or post-transcriptional mechanisms in the context of vectors that have already entered a clinical development phase.


Assuntos
Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Lentivirus/genética , Animais , Ensaios Clínicos como Assunto , Proteínas de Fluorescência Verde , Humanos , Camundongos , Transdução Genética/métodos
9.
Mol Ther Methods Clin Dev ; 15: 232-245, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31720302

RESUMO

Genetic deficiency of the nuclease DCLRE1C/Artemis causes radiosensitive severe combined immunodeficiency (RS-SCID) with lack of peripheral T and B cells and increased sensitivity to ionizing radiations. Gene therapy based on transplanting autologous gene-modified hematopoietic stem cells could significantly improve the health of patients with RS-SCID by correcting their immune system. A lentiviral vector expressing physiological levels of human ARTEMIS mRNA from an EF1a promoter without post-transcriptional regulation was developed as a safe clinically applicable candidate for RS-SCID gene therapy. The vector was purified in GMP-comparable conditions and was not toxic in vitro or in vivo. Long-term engraftment of vector-transduced hematopoietic cells was achieved in irradiated Artemis-deficient mice following primary and secondary transplantation (6 months each). Vector-treated mice displayed T and B lymphopoiesis and polyclonal T cells, had structured lymphoid tissues, and produced immunoglobulins. Benign signs of inflammation were noted following secondary transplants, likely a feature of the model. There was no evidence of transgene toxicity and no induction of hematopoietic malignancy. In vitro, the vector had low genotoxic potential on murine hematopoietic progenitor cells using an immortalization assay. Altogether, these preclinical data show safety and efficacy, and support further development of the vector for the gene therapy of RS-SCID.

10.
Hum Gene Ther ; 30(10): 1222-1235, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31397176

RESUMO

In the last decade, the gene therapy (GT) field experienced a renaissance, thanks to crucial understandings and innovations in vector design, stem cell manipulation, conditioning protocols, and cell/vector delivery. These efforts were successfully coupled with unprecedented clinical results of the trials employing the newly developed technology and with the novel establishment of academic-industrial partnerships. A renewed and strengthened interest is rising in the development of gene-based approaches for inherited neurometabolic disorders with severe neurological involvement. Inherited metabolic disorders are monogenetic diseases caused by enzymatic or structural deficiencies affecting the lysosomal or peroxisomal metabolic activity. The metabolic defect can primarily affect the central nervous system, leading to neuronal death, microglial activation, inflammatory demyelination, and axonal degeneration. This review provides an overview of the GT strategies currently under clinical investigation for neurometabolic lysosomal and peroxisomal storage diseases, such as adrenoleukodystrophy and metachromatic leukodystrophy, as well as novel emerging indications such as mucopolysaccharidoses, gangliosidoses, and neuronal ceroid lipofuscinoses, with a comprehensive elucidation of the main features and mechanisms at the basis of a successful GT approach for these devastating diseases.


Assuntos
Adrenoleucodistrofia/terapia , Gangliosidoses/terapia , Terapia Genética/métodos , Leucodistrofia Metacromática/terapia , Mucopolissacaridoses/terapia , Lipofuscinoses Ceroides Neuronais/terapia , Adrenoleucodistrofia/enzimologia , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/patologia , Animais , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/patologia , Ensaios Clínicos como Assunto , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Gangliosidoses/enzimologia , Gangliosidoses/genética , Gangliosidoses/patologia , Edição de Genes/métodos , Técnicas de Transferência de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Leucodistrofia Metacromática/enzimologia , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/patologia , Mucopolissacaridoses/enzimologia , Mucopolissacaridoses/genética , Mucopolissacaridoses/patologia , Lipofuscinoses Ceroides Neuronais/enzimologia , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia
11.
Hum Gene Ther ; 30(8): 1023-1034, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30977420

RESUMO

The initial stages following the in vitro cytokine stimulation of human cord blood CD34+ cells overlap with the period when lentiviral gene transfer is typically performed. Single-cell transcriptional profiling and time-lapse microscopy were used to investigate how the vector-cell crosstalk impacts on the fate decision process. The single-cell transcription profiles were analyzed using a new algorithm, and it is shown that lentiviral transduction during the early stages of stimulation modifies the dynamics of the fate choice process of the CD34+ cells. The cells transduced with a lentiviral vector are biased toward the common myeloid progenitor lineage. Valproic acid, a histone deacetylase inhibitor known to increase the grafting potential of the CD34+ cells, improves the transduction efficiency to almost 100%. The cells transduced in the presence of valproic acid can subsequently undergo normal fate commitment. The higher gene transfer efficiency did not alter the genomic integration profile of the vector. These observations open the way to substantially improving lentiviral gene transfer protocols.


Assuntos
Vetores Genéticos/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Transdução Genética , Ácido Valproico/farmacologia , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Sangue Fetal/citologia , Expressão Gênica , Técnicas de Transferência de Genes , Células-Tronco Hematopoéticas/citologia , Humanos , Fenótipo , Transgenes , Integração Viral
12.
Mol Ther Methods Clin Dev ; 11: 167-179, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30533448

RESUMO

Sickle cell disease (SCD) is caused by a mutation (E6V) in the hemoglobin (Hb) ß-chain that induces polymerization of Hb tetramers, red blood cell deformation, ischemia, anemia, and multiple organ damage. Gene therapy is a potential alternative to human leukocyte antigen (HLA)-matched allogeneic hematopoietic stem cell transplantation, available to a minority of patients. We developed a lentiviral vector expressing a ß-globin carrying three anti-sickling mutations (T87Q, G16D, and E22A) inhibiting axial and lateral contacts in the HbS polymer, under the control of the ß-globin promoter and a reduced version of the ß-globin locus-control region. The vector (GLOBE-AS3) transduced 60%-80% of mobilized CD34+ hematopoietic stem-progenitor cells (HSPCs) and drove ßAS3-globin expression at potentially therapeutic levels in erythrocytes differentiated from transduced HSPCs from SCD patients. Transduced HSPCs were transplanted in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG)-immunodeficient mice to analyze biodistribution, chimerism, and transduction efficiency in bone marrow (BM), spleen, thymus, and peripheral blood 12-14 weeks after transplantation. Vector integration site analysis, performed in pre-transplant HSPCs and post-transplant BM cells from individual mice, showed a normal lentiviral integration pattern and no evidence of clonal dominance. An in vitro immortalization (IVIM) assay showed the low genotoxic potential of GLOBE-AS3. This study enables a phase I/II clinical trial aimed at correcting the SCD phenotype in juvenile patients by transplantation of autologous hematopoietic stem cells (HSC) transduced by GLOBE-AS3.

13.
Mol Ther Methods Clin Dev ; 11: 9-28, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30320151

RESUMO

Gene therapy clinical trials require rigorous non-clinical studies in the most relevant models to assess the benefit-to-risk ratio. To support the clinical development of gene therapy for ß-thalassemia, we performed in vitro and in vivo studies for prediction of safety. First we developed newly GLOBE-derived vectors that were tested for their transcriptional activity and potential interference with the expression of surrounding genes. Because these vectors did not show significant advantages, GLOBE lentiviral vector (LV) was elected for further safety characterization. To support the use of hematopoietic stem cells (HSCs) transduced by GLOBE LV for the treatment of ß-thalassemia, we conducted toxicology, tumorigenicity, and biodistribution studies in compliance with the OECD Principles of Good Laboratory Practice. We demonstrated a lack of toxicity and tumorigenic potential associated with GLOBE LV-transduced cells. Vector integration site (IS) studies demonstrated that both murine and human transduced HSCs retain self-renewal capacity and generate new blood cell progeny in the absence of clonal dominance. Moreover, IS analysis showed an absence of enrichment in cancer-related genes, and the genes targeted by GLOBE LV in human HSCs are well known sites of integration, as seen in other lentiviral gene therapy trials, and have not been associated with clonal expansion. Taken together, these integrated studies provide safety data supporting the clinical application of GLOBE-mediated gene therapy for ß-thalassemia.

14.
Hum Gene Ther ; 29(10): 1153-1166, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30198339

RESUMO

Sickle cell disease (SCD) is an inherited blood disorder caused by a single amino acid substitution in the ß-globin chain of hemoglobin. Gene therapy is a promising therapeutic alternative, particularly in patients lacking an allogeneic bone marrow (BM) donor. One of the major challenges for an effective gene therapy approach is the design of an efficient vector that combines high-level and long-term ß-globin expression with high infectivity in primary CD34+ cells. Two lentiviral vectors carrying an anti-sickling ß-globin transgene (AS3) were directly compared: the Lenti/ßAS3-FB, and Globe-AS3 with and without the FB insulator. The comparison was performed initially in human BM CD34+ cells derived from SCD patients in an in vitro model of erythroid differentiation. Additionally, the comparison was carried out in two in vivo models: First, an NOD SCID gamma mouse model was used to compare transduction efficiency and ß-globin expression in human BM CD34+ cells after transplant. Second, a sickle mouse model was used to analyze ß-globin expression produced from the vectors tested, as well as hematologic correction of the sickle phenotype. While minor differences were found in the vectors in the in vitro study (2.4-fold higher vector copy number in CD34+ cells when using Globe-AS3), no differences were noted in the overall correction of the SCD phenotype in the in vivo mouse model. This study provides a comprehensive in vitro and in vivo analysis of two globin lentiviral vectors, which is useful for determining the optimal candidate for SCD gene therapy.


Assuntos
Anemia Falciforme/genética , Anemia Falciforme/terapia , Terapia Genética , Globinas beta/genética , Animais , Diferenciação Celular , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Camundongos , Fenótipo , RNA Mensageiro/genética , Transdução Genética , Resultado do Tratamento
15.
Mol Ther Methods Clin Dev ; 10: 268-280, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30140714

RESUMO

Autologous transplantation of hematopoietic stem cells transduced with a lentiviral vector (LV) expressing an anti-sickling HBB variant is a potential treatment for sickle cell disease (SCD). With a clinical trial as our ultimate goal, we generated LV constructs containing an anti-sickling HBB transgene (HBBAS3), a minimal HBB promoter, and different combinations of DNase I hypersensitive sites (HSs) from the locus control region (LCR). Hematopoietic stem progenitor cells (HSPCs) from SCD patients were transduced with LVs containing either HS2 and HS3 (ß-AS3) or HS2, HS3, and HS4 (ß-AS3 HS4). The inclusion of the HS4 element drastically reduced vector titer and infectivity in HSPCs, with negligible improvement of transgene expression. Conversely, the LV containing only HS2 and HS3 was able to efficiently transduce SCD bone marrow and Plerixafor-mobilized HSPCs, with anti-sickling HBB representing up to ∼60% of the total HBB-like chains. The expression of the anti-sickling HBB and the reduced incorporation of the ßS-chain in hemoglobin tetramers allowed up to 50% reduction in the frequency of RBC sickling under hypoxic conditions. Together, these results demonstrate the ability of a high-titer LV to express elevated levels of a potent anti-sickling HBB transgene ameliorating the SCD cell phenotype.

16.
Mol Ther Methods Clin Dev ; 9: 257-269, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29707600

RESUMO

X-linked severe combined immunodeficiency (SCID-X1) is caused by mutations in the interleukin-2 receptor γ chain gene (IL2RG), and it is characterized by profound defects in T, B, and natural killer (NK) cell functions. Transplantation of hematopoietic stem/progenitor cells (HSPCs) genetically corrected with early murine leukemia retrovirus (MLV)-derived gammaretroviral vectors showed restoration of T cell immunity in patients, but it resulted in vector-induced insertional oncogenesis. We developed a self-inactivating (SIN) lentiviral vector carrying a codon-optimized human IL2RG cDNA driven by the EF1α short promoter (EFS-IL2RG), and we tested its efficacy and safety in vivo by transplanting transduced Il2rg-deficient Lin- HSPCs in an Il2rg-/-/Rag2-/- mouse model. The study showed restoration of T, B, and NK cell counts in bone marrow and peripheral blood and normalization of thymus and spleen cellularity and architecture. High-definition insertion site analysis defined the EFS-IL2RG genomic integration profile, and it showed no sign of vector-induced clonal selection or skewing in primarily and secondarily transplanted animals. The study enables a phase I/II clinical trial aimed at restoring both T and B cell immunity in SCID-X1 children upon non-myeloablative conditioning.

17.
Mol Ther ; 26(4): 1137-1153, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29503198

RESUMO

The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform that combines simplicity, inexpensive manufacture, and favorable safety features in the context of human applications. However, efficient correction of hematopoietic stem and progenitor cells (HSPCs) with non-viral vector systems, including SB, demands further refinement of gene delivery techniques. We set out to improve SB gene transfer into hard-to-transfect human CD34+ cells by vectorizing the SB system components in the form of minicircles that are devoid of plasmid backbone sequences and are, therefore, significantly reduced in size. As compared to conventional plasmids, delivery of the SB transposon system as minicircle DNA is ∼20 times more efficient, and it is associated with up to a 50% reduction in cellular toxicity in human CD34+ cells. Moreover, providing the SB transposase in the form of synthetic mRNA enabled us to further increase the efficacy and biosafety of stable gene delivery into hematopoietic progenitors ex vivo. Genome-wide insertion site profiling revealed a close-to-random distribution of SB transposon integrants, which is characteristically different from gammaretroviral and lentiviral integrations in HSPCs. Transplantation of gene-marked CD34+ cells in immunodeficient mice resulted in long-term engraftment and hematopoietic reconstitution, which was most efficient when the SB transposase was supplied as mRNA and nucleofected cells were maintained for 4-8 days in culture before transplantation. Collectively, implementation of minicircle and mRNA technologies allowed us to further refine the SB transposon system in the context of HSPC gene delivery to ultimately meet clinical demands of an efficient and safe non-viral gene therapy protocol.


Assuntos
Elementos de DNA Transponíveis , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Sobrevivência Celular , Citometria de Fluxo , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Retroviridae/genética , Transfecção , Transgenes
18.
Mol Ther Methods Clin Dev ; 8: 31-41, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29159201

RESUMO

Replication-defective retroviral vectors have been used for more than 25 years as a tool for efficient and stable insertion of therapeutic transgenes in human cells. Patients suffering from severe genetic diseases have been successfully treated by transplantation of autologous hematopoietic stem-progenitor cells (HSPCs) transduced with retroviral vectors, and the first of this class of therapies, Strimvelis, has recently received market authorization in Europe. Some clinical trials, however, resulted in severe adverse events caused by vector-induced proto-oncogene activation, which showed that retroviral vectors may retain a genotoxic potential associated to proviral integration in the human genome. The adverse events sparked a renewed interest in the biology of retroviruses, which led in a few years to a remarkable understanding of the molecular mechanisms underlying retroviral integration site selection within mammalian genomes. This review summarizes the current knowledge on retrovirus-host interactions at the genomic level, and the peculiar mechanisms by which different retroviruses, and their related gene transfer vectors, integrate in, and interact with, the human genome. This knowledge provides the basis for the development of safer and more efficacious retroviral vectors for human gene therapy.

19.
J Vis Exp ; (123)2017 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-28605390

RESUMO

Moloney murine leukemia (MLV) virus-based retroviral vectors integrate predominantly in acetylated enhancers and promoters. For this reason, mLV integration sites can be used as functional markers of active regulatory elements. Here, we present a retroviral scanning tool, which allows the genome-wide identification of cell-specific enhancers and promoters. Briefly, the target cell population is transduced with an mLV-derived vector and genomic DNA is digested with a frequently cutting restriction enzyme. After ligation of genomic fragments with a compatible DNA linker, linker-mediated polymerase chain reaction (LM-PCR) allows the amplification of the virus-host genome junctions. Massive sequencing of the amplicons is used to define the mLV integration profile genome-wide. Finally, clusters of recurrent integrations are defined to identify cell-specific regulatory regions, responsible for the activation of cell-type specific transcriptional programs. The retroviral scanning tool allows the genome-wide identification of cell-specific promoters and enhancers in prospectively isolated target cell populations. Notably, retroviral scanning represents an instrumental technique for the retrospective identification of rare populations (e.g. somatic stem cells) that lack robust markers for prospective isolation.


Assuntos
Sequências Reguladoras de Ácido Nucleico , Retroviridae/genética , Integração Viral , Humanos
20.
Sci Rep ; 6: 24724, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27095295

RESUMO

Genome-wide approaches allow investigating the molecular circuitry wiring the genetic and epigenetic programs of human somatic stem cells. Hematopoietic stem/progenitor cells (HSPC) give rise to the different blood cell types; however, the molecular basis of human hematopoietic lineage commitment is poorly characterized. Here, we define the transcriptional and epigenetic profile of human HSPC and early myeloid and erythroid progenitors by a combination of Cap Analysis of Gene Expression (CAGE), ChIP-seq and Moloney leukemia virus (MLV) integration site mapping. Most promoters and transcripts were shared by HSPC and committed progenitors, while enhancers and super-enhancers consistently changed upon differentiation, indicating that lineage commitment is essentially regulated by enhancer elements. A significant fraction of CAGE promoters differentially expressed upon commitment were novel, harbored a chromatin enhancer signature, and may identify promoters and transcribed enhancers driving cell commitment. MLV-targeted genomic regions co-mapped with cell-specific active enhancers and super-enhancers. Expression analyses, together with an enhancer functional assay, indicate that MLV integration can be used to identify bona fide developmentally regulated enhancers. Overall, this study provides an overview of transcriptional and epigenetic changes associated to HSPC lineage commitment, and a novel signature for regulatory elements involved in cell identity.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Epigênese Genética , Regulação Viral da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Sequências Reguladoras de Ácido Nucleico , Retroviridae/genética , Transcriptoma , Sequência de Bases , Sequência Consenso , Elementos Facilitadores Genéticos , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Humanos , Células-Tronco Multipotentes/citologia , Especificidade de Órgãos , Matrizes de Pontuação de Posição Específica , Regiões Promotoras Genéticas , Iniciação da Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...